DECADE COUNTER/DIVIDER WITH DECODED 7-SEGMENT DISPLAY OUTPUT AND DISPLAY ENABLE

- COUNTER AND 7-SEGMENT DECODING IN ONE PACKAGE
- EASILY INTERFACED WITH 7-SEGMENT DISPLAY TYPES
- FULLY STATIC COUNTER OPERATION : DC TO 6 MHz (Typ.) AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- IDEAL FOR LOW POWER DISPLAYS
- DISPLAY ENABLE OUTPUT
- QUIESCENT CURRENT SPECIF. UP TO 20V
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- INPUT LEAKAGE CURRENT
$I_{I}=100 n A(M A X) A T V_{D D}=18 V T_{A}=25^{\circ} \mathrm{C}$
- 100\% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

The HCF4026B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4026B consists of a 5-stages Johnson decade counter and an output decoder which converts the Johnson code to a 7 segment decoded output for driving one stage in a numerical display. This device is particularly advantageous in display applications where low power dissipation and/or low package count are

ORDER CODES

PACKAGE	TUBE	T\& R
DIP	HCF4026BEY	
SOP	HCF4026BM1	HCF4026M013TR

important. This device has CLOCK, RESET, CLOCK INHIBIT, DISPLAY ENABLE input and CARRY OUT, DISPLAY ENABLE, UNGATED "C" SEGMENT and 7 DECODED outputs (a to g). A high RESET signal clears the decade counter to its zero count. The counter is advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. Antilock gating is provided on the JOHNSON counter, thus assuring proper counting sequence. The CARRY-OUT ($\mathrm{C}_{\text {OUT }}$) signal completes one cycle every ten CLOCK INPUT cycles and is used to clock the succeeding decade directly in a multi-decade counting chain.

PIN CONNECTION

The seven decoded outputs (a, b, c, d, e, f, g) illuminate the proper segments in a seven segment display device used for representing the decimal numbers 0 to 9 . The 7 -segment outputs go high when the DISPLAY ENABLE IN is high. When the DISPLAY ENABLE IN is low the seven decoded outputs are forced low regardless of the state of the counter. Activation of the display only
IINPUT EQUIVALENT CIRCUIT

when required results in significant power savings. This system also facilitates implementation of display character multiplexing. The CARRY OUT and UNGATED "C" SEGMENT signals are not gated by the DISPLAY ENABLE and therefore are available continuously. This feature is a requirement in implementation of certain divider function such a as divide by 60 and divide by 12.

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	CLOCK	Clock Input
$10,12,13,9$, $11,6,7$	a to g	7 - Segments Decoded Outputs
2	CLOCK INHIBIT	Clock Inhibit Input
15	RESET	Reset Input
3	DISPLAY ENABLE IN	Display Enable Input
5	CARRY OUT	Carry Out Output
4	DISPLAY ENABLE OUT	Display Enable Output
14	UNGATED "C" SEG- MENT OUT	Ungated "C" Segment Output
8	VSS	Negative Supply Voltage
16	VDD	Positive Supply Voltage

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

TIMING CHART

HCF4026B

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
$\mathrm{~T}_{\mathrm{op}}$	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{DD}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions				Value							Unit
		$\begin{gathered} V_{1} \\ (V) \end{gathered}$	V_{0} (V)	$\left\lvert\, \begin{aligned} & \left\|\begin{array}{l} \left\|I_{0}\right\| \\ (\mu \mathrm{A}) \end{array}\right\| \end{aligned}\right.$	$V_{D D}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
						Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
I_{L}	Quiescent Current	0/5			5		0.04	5		150		150	$\mu \mathrm{A}$
		0/10			10		0.04	10		300		300	
		0/15			15		0.04	20		600		600	
		0/20			20		0.08	100		3000		3000	
V_{OH}	High Level Output Voltage	0/5		<1	5	4.95			4.95		4.95		V
		0/10		<1	10	9.95			9.95		9.95		
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output Voltage	5/0		<1	5		0.05			0.05		0.05	V
		10/0		<1	10		0.05			0.05		0.05	
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input Voltage		0.5/4.5	<1	5	3.5			3.5		3.5		V
			1/9	<1	10	7			7		7		
			1.5/18.5	<1	15	11			11		11		
V_{IL}	Low Level Input Voltage		0.5/4.5	<1	5			1.5		1.5		1.5	V
			9/1	<1	10			3		3		3	
			1.5/18.5	<1	15			4		4		4	
I_{OH}	Output Drive Current	0/5	2.5		5	-1.36	-3.2		-1.1		-1.1		mA
		0/5	4.6		5	-0.44	-1		-0.36		-0.36		
		0/10	9.5		10	-1.1	-2.6		-0.9		-0.9		
		0/15	13.5		15	-3.0	-6.8		-2.4		-2.4		
$\mathrm{I}_{\text {OL }}$	Output Sink Current	0/5	0.4		5	0.44	1		0.36		0.36		mA
		0/10	0.5		10	1.1	2.6		0.9		0.9		
		0/15	1.5		15	3.0	6.8		2.4		2.4		
1	Input Leakage Current	0/18	any input		18		$\pm 10^{-5}$	± 0.1		± 1		± 1	$\mu \mathrm{A}$
Cl_{1}	Input Capacitance		any input				5	7.5					pF

The Noise Margin for both " 1 " and " 0 " level is: 1 V min. with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, 2 V min. with $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, 2.5 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

HCF4026B

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{a m b}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, R_{\mathrm{L}}=200 \mathrm{~K} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$)

Symbol	Parameter	Test Condition			Value ($\left.{ }^{*}\right)$		Unit
		$V_{\mathrm{DD}}(\mathrm{V})$		Min.	Typ.	Max.	

RESET OPERATION

[^0]
TYPICAL APPLICATIONS

Interfacing with Filament Fluorescent Display

Interfacing with LED Displays (display common anode)

Interfacing with NIXIE Tube

Detail of Typical Flip-flop Stage

Interfacing with LED Displays (display common cathode)

TEST CIRCUIT

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=200 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20		0.335	
E		17.78			0.100	
e						0.787
e3						
F		3.3	5.1		0.130	
I						0.280
L						
Z						0.050

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

[^0]: (*) Typical temperature coefficient for all V_{DD} value is $0.3 \% /{ }^{\circ} \mathrm{C}$.
 (1) Measured with respect to carry output line.

