'147, 'LS147

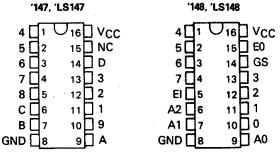
- Encodes 10-Line Decimal to 4-Line BCD
- Applications Include:
 - Keyboard Encoding
 - Range Selection

'148, 'LS148

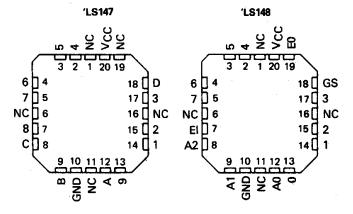
- Encodes 8 Data Lines to 3-Line Binary (Octal)
- Applications Include:
 - N-Bit Encoding
 - Code Converters and Generators

	TYPICAL	TYPICAL
TYPE	DATA	POWER
	DELAY	DISSIPATION
147	10 ns	225 mW
'148	10 ns	190 mW
'LS147	15 ns	60 mW
'LS148	15 ns	60 mW

description


These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The '147 and 'LS147 encode nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition requires no input condition as zero is encoded when all nine data lines are at a high logic level. The '148 and 'LS148 encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input EI and enable output EO) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level. All inputs are buffered to represent one normalized Series 54/74 or 54LS/74LS load, respectively.

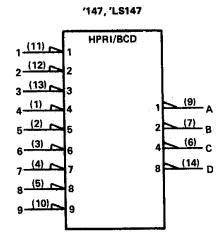
'147, 'LS147 FUNCTION TABLE


			۱ŧ	NPUT	S					OUT	PUTS	
1	2	3	4	5	6	7	8	9.	٥	С	В	Α
н	н	Н	Н	Н	Н	Н	Н	н	н	Н	Н	Н
X	×	×	×	×	×	×	X	L	L	н	н	L.
Х	x	×	X	×	X	×	L	H	L	Н	н	Н
х	×	X	X	X	х	L	Н	Н	н	L	L	Ł
Х	×	×	×	X	L	н	н	Н	н	L	L	н
X	X	X	×	L	н	н	н	н	н	L	н	L
х	X	X	L	н	н	н	н	Н	Н	L	Н	Н
X	×	L	H	н	н	н	н	н	H	н	L	L
X	Ł	Э	H	H	Н	н	H	н	н	н	L.	Н
L	н	н	н	н	Н	н	н	н	н	н	н	Ļ

H = high logic level, L = low logic level, X = irrelevant

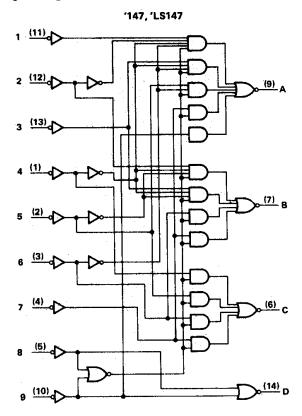
\$N54147, SN54LS147, SN54148, SN54LS148 . . . J OR W PACKAGE SN74147, SN74148 . . . N PACKAGE SN74LS147, SN74LS148 . . . D OR N PACKAGE (TOP VIEW)

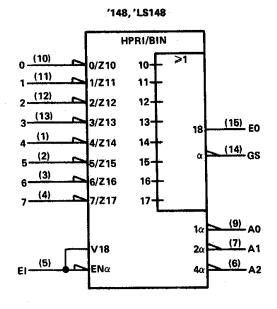
SN54LS147, SN54LS148 . . . FK PACKAGE (TOP VIEW)

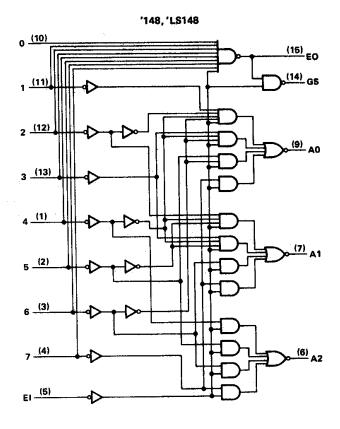

NC - No internal connection

'148, 'LS148 FUNCTION TABLE

			11	VPUT	S				OUTPUTS					
ΕI	0	1	2	3	4	5	6	7	A2	A1	AO	GS	EO	
Н	х	×	×	Х	×	х	х	Х	H ^r	н	Н	Н	н	
Ł	н	H	H	Н	Н	н	Н	н	H	н	н	н	L	
L	х	×	×	×	×	X	X	L	L	L	L	L	Н	
L	х	X	×	×	X	X	L	Н	L	Ł	н	L	н	
L	х	×	х	Х	×	L	Н	Н	L	н	L	L	Н	
L	x	Х	X	×	L	н	Н	н	L	н	н	L	Н	
L	х	×	х	L	н	Н	Н	Н	н	L	Ł	L	н	
L	х	X	L	H	Н	н	н	н	н	L	н	L	н	
L	X	٤	H	Н	н	н	н	Н	н	Н	L	L	Н	
L	L	Н	н	Н	Н	н	Н	Н	Н	Н	Н	L	Н	

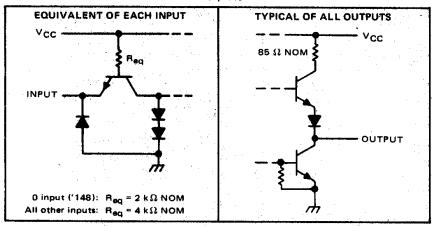

logic symbols†


[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC.Publication 617-12.


Pin numbers shown are for D, J, N, and W packages.

logic diagrams

Pin numbers shown are for D, J, N, and W packages.



schematics of inputs and outputs

147, 148

'LS147, 'LS148

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)							 		 	7 V
Input voltage: '147, '148						 	 		 	5.5 V
'LS147, 'LS148					٠					7 V
Interemitter voltage: 148 only (see Note 2	2)	٠.٠.					 		 	5.5 V
Operating free-air temperature range: SN5	4', 5	SN54	LS	Circ	uits		 		 ٠.	-55°C to 125°C
SN7	4′, \$	SN74	LS	Circ	uits		 	÷	 	. 0°C to 70°C
Storage temperature range	• • •	٠					 		 	-65°C to 150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For '148 circuits, this rating applies between any two of the eight data lines, 0 through 7.

recommended operating conditions

		SN54'			SN74'			SN54LS	§'		SN74LS	3'	
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800			400			-400	μА
Low-level output current, IOL			16	1		16		 	4		·	8	mA
Operating free-air temperature, TA	-55		125	0		70	-55	*******	125	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	70	°C

SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

SDLS053A - OCTOBER 1976 - REVISED FEBRUARY 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			TEST OF	NOITIONS†		'147		148			UNIT
	PARAMET	EN	1251 CC	MUITIONS.	MIN	TYP	MAX	MIN	TYP‡	MAX	UNII
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						8.0			8.0	V
VIK	Input clamp voltage	· ;	VCC = MIN,	l _j = -12 mA			-1.5	-		-1.5	V
Vон	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -800 μA	2.4	3.3		2.4	3.3		V.
VOL	Low-level output voltage	ow-level output voltage		V _{IH} = 2 V, i _{OL} = 16 mA		0.2	0.4		0.2	0.4	٧
1	Input current at maximum	input voltage	VCC = MAX,	V _I = 5.5 V			1			1	mA.
	Historia in the second	0 input	V MAY	V. = 0.4 V						40	
1111	High-level input current	Any input except 0	VCC = MAX,	VI = 2.4 V			40			80	μA
	1 1 1	0 input	V 144 V	¥ = 0.4¥						-1.6	^
11	Low-level input current	Any input except 0	VCC = MAX,	V = 0.4 V			-1.6			-3.2	mA
los	Short-circuit output currer	ıt 🕅	V _{CC} = MAX		-35		-85	-35		-85	mA
			V _{CC} = MAX,	Condition 1		50	70		40	60	mA
icc :	Supply current		See Note 3	Condition 2		42	62		35	55	mA

NOTE 3: For '147, I_{CC} (condition 1) is measured with input 7 grounded, other inputs and outputs open; I_{CC} (condition 2) is measured with inputs and outputs open. For '148, I_{CC} (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open; I_{CC} (condition 2) is measured with all inputs and outputs open.

SN54147, SN74147 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN TY	MAX	UNIT
tPLH	Any	Any	In-phase	CL = 15 pF,	9	14	ns
tPHL	Ally	7'''Y	output	R _L = 400 Ω,	7	11] ""
tPLH	Any	Any	Out-of-phase	See Note 4	13	19	ns
tPHL .	Ally .	Ally	output	, occ 110te 4	12	19] "

SN54148, SN74148 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER [¶]	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	1 thru 7	A0, A1, or A2	In-phase			10	15	ns
tPHL	1 4110 /	A0, A1, 01 A2	output			9	14	1 '''
^t PLH	1 thru 7	A0, A1, or A2	Out-of-phase			13	19	ns
tPHL.	1 thru/	AU, A1, OF A2	output			12	19	''3
tPLH	0 thru 7	EO	Out-of-phase	1		6	10	ns
tPHL	O thru /	- 60	output	C 13 pE		14	25	1 '''
^t PLH	0 thru 7	GS	. In-phase	C _L = 15 pF, R _L = 400 Ω,		18	30	ns
tPHL	O thru /	GS .	output	See Note 4		14	25] ''`
tPLH		A0, A1, or A2	In-phase	Jee Wole 4		10	15	ns
tPHL .	Εl	AU, A1, 01 A2	output			10	15] ''`_
t₱LH		GS	In-phase]		8	12	ns
tPHL.	EI	. GS	output			10	15] '''
tPLH .	Ει	EQ	In-phase			10	15	ns
tPHL .		. =0	output			17	30] '"

[¶]tpLH = propagation delay time, low-to-high-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMET	Eo.	TEST COL	IDITIONS†	:	SN54LS	S '		SN74LS	3'	UNIT
	PANAMET	En	TEST CON	IDITIONS'	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage		·				0.7			0.8	V
VIK	Input clamp voltage		VCC = MIN,	I _I = -18 mA			-1.5			-1.5	٧
۷он	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V I _{OH} = -400 μA	2.5	3.4		2.7	3.4		v
Voi	Low-level output voltage		V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0,4		0.25	0.4	V
		violoti output vortage		IOL = 8 mA					0.35	0.5	
lı .	Input current at	'LS148 inputs 1 thru 7	V _{CC} = MAX,	V. = 7 V			0.2			0.2	mÁ
''	maximum input voltage	All other inputs	ACC - MAY	V1 - 7 V			0.1			0.1	mA
1	High-level input current	'LS148 inputs 1 thru 7	V	V = 0.7 V			40			40	
ΊΗ	mign-rever impar content	All other inputs	V _{CC} = MAX,	VI - 2.7 V			20			20	μΑ
i	1 and local import access	'LS148 inputs 1 thru 7	V MAY	W = 0.4 W			-0.8			0.8	
IIL.	Low-level input current	All other inputs	V _{CC} = MAX,	V ₁ = 0.4 V			-0.4			-0.4	. mA
los	Short-circuit output current	t §	V _{CC} = MAX		20		-100	20		-100	mA.
laa	Cumply gurrant		V _{CC} = MAX,	Condition 1		. 12	. 20		12	20	mA .
ICC	Supply current	•	See Note 5	Condition 2		10	. 17		10	17	mA

NOTE 5: For 'LS147, I_{CC} (condition 1) is measured with input 7 grounded, other inputs and outputs open; I_{CC} (condition 2) is measured with all inputs and outputs open. For 'LS148, I_{CC} (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open, I_{CC} (condition 2) is measured with all inputs and outputs open.

SN54LS147, SN74LS147 switching characteristics, VCC = 5 V, TA = 25°C

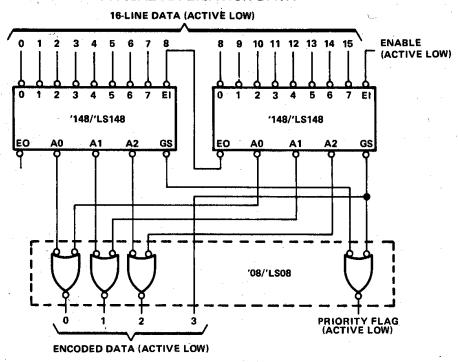
PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Any	Anv	In-phase	C 15 - E		12	18	
tPHL	Olly	Wild	output	C _L = 15 pF,		12	18	ns
^t PLH	Any	Anv	Out-of-phase	R _L = 2 kΩ, See Note 4		21	33	1
tPHL	colly .	- Dilly	output	366 140(6.4		15	23	ns

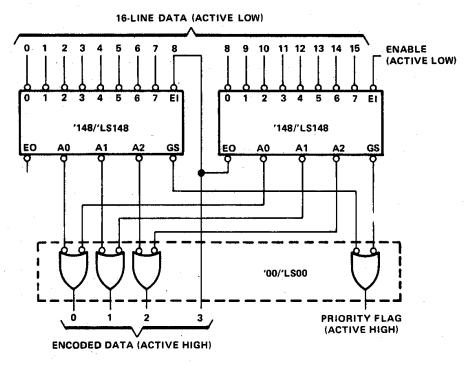
SN54LS148, SN74LS148 switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH .	1 thru 7	A0, A1, or A2	In-phase			14	18	ns
tPHL .	T thru /	AU, A1, 01 A2	output			15	25	1 "
tPLH .	1 thru 7	A0, A1, or A2	Out-of-phase			20	36	
^t PHL	s thru /	70, 71, 01 72	output			16	29	ns
tPLH .	0 thru 7	EO	Out-of-phase			7	- 18	
tPHL	O tilla 7	-	output	0 45.5		25	40	ns
^t PLH	0 thru 7	GS	In-phase	CL = 15 pF,		35	55	
tPHL .	o thru 7	33	output	$R_L = 2 k\Omega$		9	21	ns
tPLH	EI	A0, A1, or A2	In-phase	See Note 4		16	25	٠
tPHL .	EI	AU, AT, G A2	output			12	25	ns
†PLH	EI	GS	In-phase	1		12	17	
tPHL	E1	43	output			14	36	ns
tPLH /	EI	EO	In-phase	1		12	21	
tPHL.	E1	20	output			23	35	ns

[¶]tpLH ≡ propagation delay time, low-to high-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.


[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V, } T_A = 25^{\circ}\text{C.}$

Not more than one output should be shorted at a time.

tPHL = propagation delay time, high-to-low-level output

TYPICAL APPLICATION DATA

Since the '147/'LS147 and '148/'LS148 are combinational logic circuits, wrong addresses can appear during input transients. Moreover, for the '148/'LS148 a change from high to low at input EI can cause a transient low on the GS output when all inputs are high. This must be considered when strobing the outputs.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated