SDLS057 - MARCH 1974 - REVISED MARCH 1988

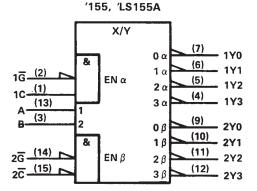
Applications:

Dual 2-to 4-Line Decoder

Dual 1-to 4-Line Demultiplexer

3-to 8-Line Decoder

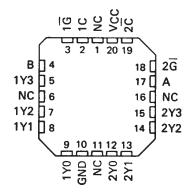
1-to 8-Line Demultiplexer

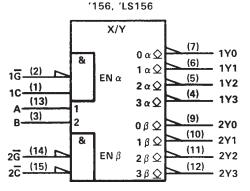

- Individual Strobes Simplify Cascading for Decoding or Demultiplexing Larger Words
- Input Clamping Diodes Simplify System Design
- Choice of Outputs: Totem Pole ('155, 'LS155A)
 Open-Collector ('156, 'LS156)

	TYPICAL AVERAGE	TYPICAL
TYPES	PROPAGATION DELAY	POWER
	3 GATE LEVELS	DISSIPATION
'155, '156	21 ns	125 mW
'LS155A	18 ns	31 mW
'I S156	32 ns	31 mW

description

These monolithic transistor-transistor-logic (TTL) circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input 1C is inverted at its outputs and data applied at 2C is not inverted through its outputs. The inverter following the 1C data input permits use as a 3-to-8-line decoder or 1-to-8-line demultiplexer without external gating. Input clamping diodes are provided on all of these circuits to minimize transmission-line effects and simplify system design.

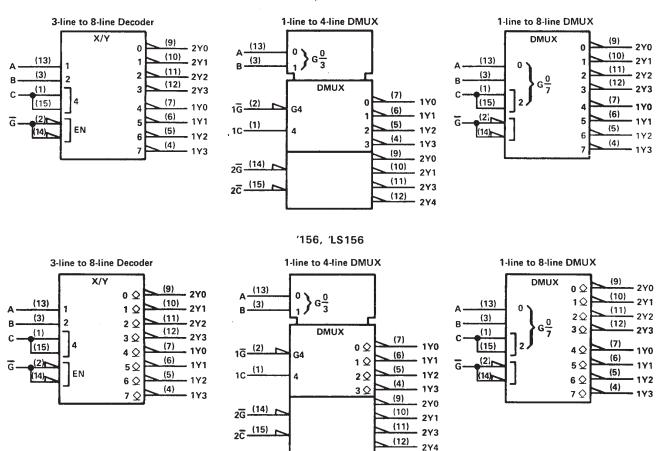

logic symbols (2-line to 4-line decoder)†


SN54155, SN54156, SN54LS155A, SN54LS156...J OR W PACKAGE SN74155, SN74156...N PACKAGE SN74LS155A, SN74LS156...D OR N PACKAGE (TOP VIEW)

1 <u>C</u>	Ц	1	U ₁₆	þ	V <u>c</u> c
1G		2	15		2C
В		3	14		2G
1Y3		4	13		Α
1Y2		5	12		2Y3
1Y1		6	11		2Y2
1Y0		7	10		2Y1
GND		8	9		2Y0

SN54LS155A, SN54LS156 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection


[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. For alternative symbols for other applications, see the following page.

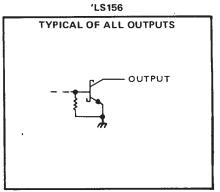
Pin numbers shown are for D, J, N, and W packages.

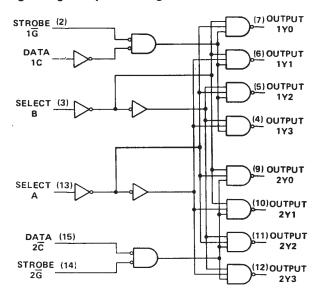
additional logic symbols (alternatives) †

'155, 'LS155A

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs


155, 156 155 156 **EQUIVALENT OF EACH INPUT** TYPICAL OF ALL OUTPUTS TYPICAL OF ALL OUTPUTS 130 Ω NOM V_CC 4 kΩ NOM OUTPUT INPUT OUTPUT


schematics of inputs and outputs (continued)

YCC 20 kΩ NOM

logic diagram (positive logic)

FUNCTION TABLES 2-LINE-TO-4-LINE DECODER OR 1-LINE-TO-4-LINE DEMULTIPLEXER

		INPUTS	•	OUTPUTS				
SEL	ECT	STROBE	DATA	110	1Y1	1Y2	1Y3	
В	Α	1Ğ	1C	110	1111	112	113	
Х	Х	н	х	Н	н	н	Н	
L	L	L	н	Ł	н	н	н	
L	н	L	Н	н	L	н	н	
н	L	L	н	Н	н	L	н	
н	н	L	н	н	н	н	L	
х	х	х	l L	H	н	Ħ	н	

		INPUTS		OUTPUTS				
SEL	ECT A	STROBE 2G	DATA 2C	2Y0	2Y1	2Y2	2Y3	
X	х	Н	×	Н	Н	Н	Н	
L	L	L	L	L	н	н	н	
L	н	L	L	н	L	н	н	
н	Ł	L	L	н	н	L	н	
н	н	L	L	н	н	н	L	
X	х	х	Н	н	Н	н	Н	

FUNCTION TABLE 3-LINE-TO-8-LINE DECODER OR 1-LINE-TO-8-LINE DEMULTIPLEXER

		INP	UTS		OUTPUTS						
SE	LEC	:т	STROBE OR DATA	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
C†	В	A	G‡	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	172	1Y3
х	Х	Х	н	Н	Н	н	Н	Н	Н	Н	н
L	L	L	Ł	L	Н	Н	Н	н	н	Н	н
L	L	н	L	н	Ł	н	н	н	н	н	н
L	Н	L	L	н	Н	L	Н	н	н	Н	н
L	Н	н	L	н	н	Н	Ł	Н	н	Н	н
н	L	L	L	н	Н	Н	н	L	н	н	н
н	L	н	L	н	Н	Н	Н	н	L	Н	н
н	н	L	L	н	Н	н	н	н	н	Ł	н
н	Н	н	L	н	Н	Н	н	н	н	н	L

 $^{^{\}dagger}$ C = inputs 1C and 2 \overline{C} connected together

 $^{{}^{\}mbox{\scriptsize $\frac{1}{G}$}}\mbox{\scriptsize \overline{G}}$ = inputs ${\bf 1}\mbox{\scriptsize \overline{G}}$ and ${\bf 2}\mbox{\scriptsize \overline{G}}$ connected together

H = high level, L = low level, X = irrelevant

SDLS057 - MARCH 1974 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage: '155, '156	
'LS155A, 'LS156	
Off-state output voltage: '156	5.5 V
Operating free-air temperature range: SN54', SN54LS' Circuits	
SN74', SN74LS' Circuits	0°C to 70°C
	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54155			SN74155			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧	
High-level output current, IOH			-800			-800	μΑ	
Low-level output current, IOL			16			16	mA	
Operating free-air temperature, TA	-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS [†]		UNIT		
				MIN	TYP‡	MAX	
VIΗ	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, 1 ₁ =	-8 mA			-1.5	٧
Voн	High-level output voltage	V _{CC} = MIN, V _{II} V _{IL} = 0.8 V, I _{OI}		2.4	3.4		٧
VOL	Low-level output voltage	V _{CC} = MIN, V _{II} V _{IL} = 0.8 V, I _{OI}	•		0.2	0.4	V
l _l	Input current at maximum input voltage	V _{CC} = MAX, V ₁	= 5.5 V			1	mA
ЧН	High-level input current	V _{CC} = MAX, V _I	= 2.4 V			40	μΑ
TIL	Low-level input current	V _{CC} = MAX, V _I	= 0.4 V			-1.6	mA
1	Short circuit autout autout 8	V MAY	SN54155	-20		-55	
los	Short-circuit output current §	V _{CC} = MAX	SN74155	-18		-57	mA
1	Supply supply	V _{CC} = MAX,	SN54155		25	35	
ICC	Supply current	See Note 2	SN74155		25	40	mA ·

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: I_{CC} is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

switching characteristics, VCC = 5 V, TA = 25 °C

PARAMETER	FROM	TO	LEVELS OF LOGIC	TEST CONDITIONS	1	N5415 N7415		UNIT
	(INPUT)	(OUTPUT)	OF LOGIC		MIN	TYP	MAX	<u> </u>
tPLH	A, B, 2 C , 1 G , or 2 G	Y	2	C _L = 15 pF,		13	20	ns
tPHL,	A, B, 2 C , 1 G , or 2 G	Υ	2			18	27	ns
tpLH	A or B	У	3	$R_L = 400 \Omega$, See Note 3		21	32	ns
t _{PHL}	A or B	Y	3	See Note 3		21	32	ns
tpLH	1C	Υ	3			16	24	ns
· tPHL	1C	Y	3			20	30	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time.

recommended operating conditions

		SN54156				SN74156			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT		
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V		
High-level output voltage, VOH			5.5			5.5	V		
Low-level output current, IOL			16			16	mA		
Operating free-air temperature, TA	-55		125	0		70	°c		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			1	SN54156 SN74156			
	PARAMETER	TEST CONDITIONS [†]	MIN		MAX	UNIT	
VIH	High-level input voltage		2			V	
VIL	Low-level input voltage				0.8	٧	
VIK	Input clamp voltage	V _{CC} = MIN, I ₁ = -8 mA			-1.5	V	
ЮН	High-level output current	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, V _{OH} = 5.5 V			250	μА	
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4	٧	
П	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V			1	mA	
ΊΗ	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40	μА	
IL	Low-level input current	V _{CC} = MAX, V ₁ = 0.4 V	1		-1.6	mA	
Icc	Supply current	V _{CC} = MAX, SN54156 See Note 2 SN74156		25 25	35 40	mA	

 $^{^{\}dagger}_{\cdot}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

switching characteristics, VCC = 5 V, TA = 25 °C

PARAMETER§	FROM	то	LEVELS	TEST CONDITIONS	1					SN54156 SN74156		UNIT
	(INPUT)	(OUTPUT)	OF LOGIC		MIN TY		MAX	1				
^t PLH	A, B, 2 C , 1 G , or 2 G	Y	2	C _L = 15 pF,		15	23	ns				
[†] PHL	A, B, 2 C , 1 G , or 2 G	Υ	2			20	30	ns				
tPLH	A or B	У	3	$R_L = 400 \Omega$, See Note 3		23	34	ns				
^t PHL	A or B	Y	3	See Note 3		23	34	ns				
t _{PLH}	1C	Υ	3			18	27	ns				
tPHL	1C	Υ	3			22	33	ns				

 $[\]S_{tPLH}$ = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS155A, SN74LS155A DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

SDLS057 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

	SN	SN54LS155A				55A	UNIT
	MIN	NOM	MAX	MIN	MOM	MAX	OINT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T _A	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS [†]			SN	154LS19	55A	SN74LS155A			UNIT
	PARAMETER				MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage	***			2			2			V
VIL	Low-level input voltage						0.7			0.8	٧
	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	٧
	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V, , I _{OH} = -400 μ/	4	2.5	3.4		2.7	3.4		٧
			V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	Low-level output voltage	VIL = VIL max	:	IOL = 8 mA					0.35	0.5	
ų	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ΊΗ	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μΑ
IIL.	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V				-0.4			-0.4	mA
	Short-circuit output current §	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2			6.1	10		6.1	10	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM	то	LEVELS OF LOGIC	TEST CONDITIONS	SNS SN3		UNIT	
	(INPUT)	(OUTPUT)			MIN	TYP	MAX	
tPLH	A, B, 2 ¯ , 1 ¯ , or 2 ¯	Y	2			10	15	ns
^t PHL	A, B, 2C, 1G, or 2G	Y	2	CL = 15 pF, RL = 2 kΩ,		19	30	ns
tPLH	A or B	Y	3	See Note 3		17	26	ns
tPHL	A or B	Y	3	See Note 3		19	30	ns
tPLH	1C	Y	3			18	27	
tPHL	1C	Y	3			18	27	ns

 $[\]mathbf{f}_{tpLH}$ = propagation delay time, low-to-high-level output

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

 $[\]S$ Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SDLS057 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

	SI	SN54LS156				SN74LS156			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT		
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V		
High-level output voltage, VOH			5.5			5.5	V		
Low-level output current, IOL			4			8			
Operating free-air temperature, TA	-55		125	0		70	°c		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						SN54LS156			SN74LS156		
	PARAMETER	TEST	TEST CONDITIONS [†]				MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level input voltage				2			2			٧
VIL	Low-level input voltage						0.7			0.8	٧
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
ЮН	High-level output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{OH} = 5.5 V				100			100	μА
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{1H} = 2 V,	I _{OL} = 4 mA		0.25	0.4		0.25 0.35	0.4 0.5	1 V
Ц	Input current at maximum input voltage	V _{CC} = MAX,	V _i = 7 V				0.1			0.1	mA
ΉΗ	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μΑ
IIL.	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V				-0.4			-0.4	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2			6.1	10		6.1	10	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER§	FROM TO (OUTPUT	то	LEVELS OF LOGIC	TEST CONDITIONS	NS NS	56 56	UNIT	
PARAMETER.		(OUTPUT)			MIN	TYP	MAX	
^t PLH	A, B, 2C 1G, or 2G	Y	2			25	40	ns
tPHL	A, B, 2C, 1G, or 2G	Y	2	$C_L = 15 pF$, $R_L = 2 k\Omega$,		34	51	ns
tPLH	A or B	Y	3	See Note 3		31	46	ns
tPHL	A or B	Y	3	See Note 3		34	51	ns
tPLH	1C	Y	3			32	48	ns
tPHL	1C	Y	3			32	48	ns

 $^{{}^{\}S}tPLH$ = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated