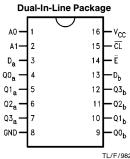
54LS256/DM74LS256 Dual 4-Bit Addressable Latch

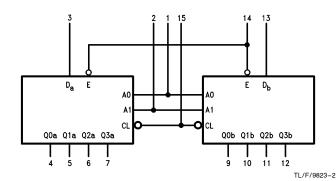
General Description

The 'LS256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs (A0, A1), an active LOW enable input ($\overline{\text{E}}$) and an active LOW Clear input ($\overline{\text{CL}}$). Each latch has a Data input (D) and four outputs (Q0-Q3).

When the Enable (\overline{E}) is HIGH and the Clear input (\overline{CL}) is LOW, all outputs (Q0-Q3) are LOW. Dual 4-channel demultiplexing occurs when the \overline{CL} and \overline{E} are both LOW. When \overline{CL} is HIGH and \overline{E} is LOW, the selected output (Q0-Q3), determined by the Address inputs, follows D. When the \overline{E} goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode (\overline{E} = LOW, \overline{CL} = HIGH), changing more than one bit of the Address (A0, A1)


could impose a transient wrong address. Therefore, this should be done only while in the memory mode ($\overline{E}=\overline{CL}=HIGH$).

Features


- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Active low common clear

Connection Diagram

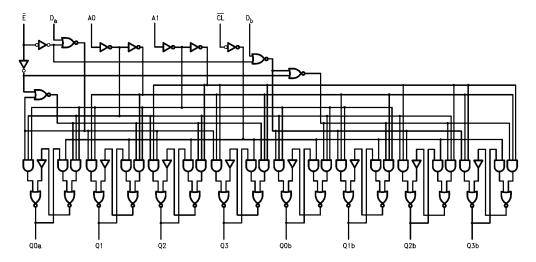
Logic Symbol

Order Number 54LS256DMQB, 54LS256FMQB or DM74LS256N See NS Package Number J16A, N16E or W16A

 $V_{CC} = Pin 16$ GND = Pin 8

Pin Names	Description
A0, A1	Common Address Inputs
D _a , D _b	Data Inputs
Ē	Common Enable Input (Active LOW)
CL	Conditional Clear Input (Active LOW)
Q0 _a –Q ₃ a	Side A Latch Outputs
Q0 _b -Q ₃ b	Side B Latch Outputs

Truth Table


	Inputs			Outputs			Mode	
CL	Ē	Α0	A 1	Q0	Q1	Q2	Q3	Mode
L	Н	Х	Х	L	L	L	L	Clear
L	L	L	L	D	L	L	L	Demultiplex
L	L	Н	L	L	D	L	L	
L	L	L	Н	L	L	D	L	
L	L	Н	Н	L	L	L	D	
Н	Н	Х	Χ	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Memory
Н	L	L	L	D	Q_{t-1}	Q_{t-1}	Q_{t-1}	Addressable
Н	L	Н	L	Q_{t-1}	D	Q_{t-1}	Q_{t-1}	Latch
Н	L	L	Н	Q_{t-1}	Q_{t-1}	D	Q_{t-1}	
Н	L	Н	Н	Q_{t-1}	Q_{t-1}	Q_{t-1}	D	

L-1 = Bit time before address change or rising edge of E
H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Mode Selection

Ē	CL	Mode
L	Н	Addressable Latch
Н	Н	Memory
L	L	Active HIGH 4-Channel Demultiplexers
Н	L	Clear

Logic Diagram

TL/F/9823-3

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage 7V

Operating Free Air Temperature Range 54LS

-55°C to +125°C DM74LS 0° C to $+70^{\circ}$ C Storage Temperature Range -65°C to +150°C

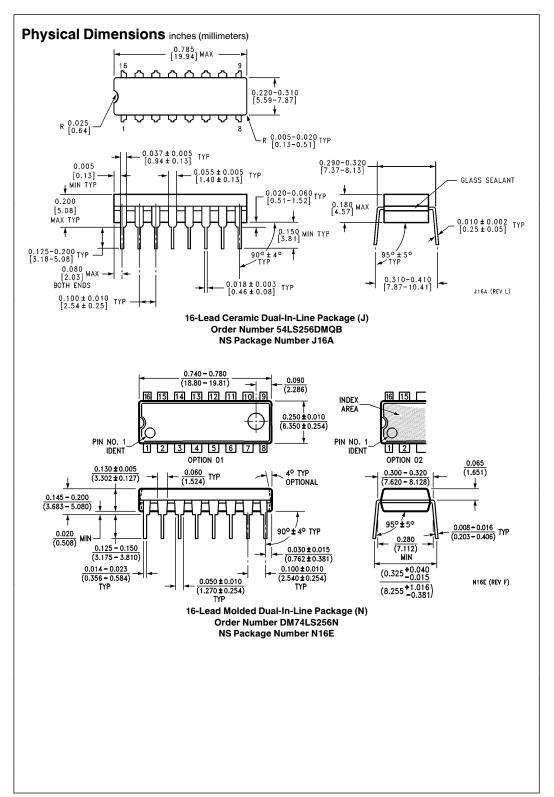
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

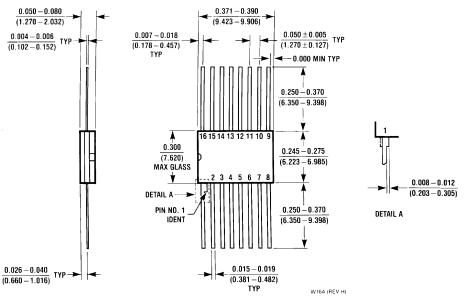
Symbol	Parameter	54LS256			DM74LS256			Units
Зупівої	raiametei	Min	Nom	Max	Min	Nom	Max	Oilles
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
Іон	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H)	Setup Time HIGH, D _n to E	20			20			ns
t _h (H)	Hold Time HIGH, D _n to E	0			0			ns
t _s (L)	Setup Time LOW, D _n to E	15			15			ns
t _h (L)	Hold Time LOW, D_n to \overline{E}	0			0			ns
t _s (H) t _s (L)	Setup Time HIGH or LOW, A _n to $\overline{\mathbb{E}}$	0			0			ns
t _w (L)	E Pulse Width LOW	17			17			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)


Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	54LS	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	54LS			0.4	V
	Voltage	V _{IH} = Min	DM74		0.35	0.5	
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$	DM74		0.25	0.4	
I _I Input Current @ Max	$V_{CC} = Max, V_I = 10V$	Inputs			0.1	mA	
	Input Voltage		Ē			0.2] ""
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$	Inputs			20	μΑ
			Ē			40] ""
I _{IL} Low Level Input Current		$V_{CC} = Max, V_I = 0.4V$	Inputs			-0.4	mA
			Ē			-0.8	
los	Short Circuit	V _{CC} = Max	54LS	-20		-100	mA
Output Current		(Note 2)	DM74	-20		-100	
Icc	Supply Current	V _{CC} = Max				25	mA

Note 1: All typicals are at $V_{CC}=5V$, $T_A=25^{\circ}C$.


Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$R_L = 2 k\Omega$ $C_L = 15 pF$ Max	Units	
t _{PLH}	Propagation Delay Ē to Q _n	27 24	ns	
t _{PLH}	Propagation Delay D _n to Q _n	30 20	ns	
t _{PLH}	Propagation Delay A _n to Q _n	30 29	ns	
t _{PLH}	Propagation Delay CL to Q _n	18	ns	

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS256FMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9860 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408