Gallium Arsenide Diode Light Source Optically Coupled to a Silicon N-P-N Phototransistor

High Direct-Current Transfer Ratio

Base Lead Provided for Conventional Transistor Biasing

High-Voltage Electrical Isolation ... 1.5-kV Rating

Plastic Dual-In-Line Package

High-Speed Switching: $t_r = 2 \mu s$, $t_f = 2 \mu s$ Typical

mechanical data

The package consists of a gallium arsenide light-emitting diode and an n-p-n silicon phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input-to-Output Voltage</td>
<td>± 1.5 kV</td>
</tr>
<tr>
<td>Collector-Base Voltage</td>
<td>30 V</td>
</tr>
<tr>
<td>Collector-Emitter Voltage (See Note 1)</td>
<td>20 V</td>
</tr>
<tr>
<td>Emitter-Collector Voltage</td>
<td>4 V</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>4 V</td>
</tr>
<tr>
<td>Input-Diode Reverse Voltage</td>
<td>3 V</td>
</tr>
<tr>
<td>Input-Diode Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Note 2)</td>
<td>60 mA</td>
</tr>
<tr>
<td>Continuous Power Dissipation at (or below) 25°C Free-Air Temperature:</td>
<td></td>
</tr>
<tr>
<td>Light-Emitting Diode (See Note 3)</td>
<td>100 mW</td>
</tr>
<tr>
<td>Phototransistor (See Note 4)</td>
<td>150 mW</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>–55°C to 150°C</td>
</tr>
<tr>
<td>Lead Temperature 1/16 inch from case for 10 seconds</td>
<td>240°C</td>
</tr>
</tbody>
</table>

NOTES:

1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to 100°C free-air temperature at the rate of 0.8 mA/°C.
3. Derate linearly to 100°C free-air temperature at the rate of 1.33 mW/°C.
4. Derate linearly to 100°C free-air temperature at the rate of 2 mW/°C.
TYPE TIL112
OPTICALLY COUPLED ISOLATOR

electrical characteristics at 25°C free-air temperature

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(BR)CEO Collector-Base Breakdown Voltage</td>
<td>IC = 10 μA, IE = 0, IF = 0</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V(BR)EBO Emitter-Base Breakdown Voltage</td>
<td>IC = 10 μA, IE = 0, IF = 0</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I(C(on)) Collector Current On-State</td>
<td>VCE = 5 V, IB = 0, IF = 10 mA</td>
<td>0.2</td>
<td>2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I(C(off)) Collector Current Off-State</td>
<td>VCE = 5 V, IB = 0, IF = 0</td>
<td>1</td>
<td>100</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>hFE Transistor Static Forward Current Transfer Ratio</td>
<td>VCE = 5 V, IC = 10 mA, IF = 0</td>
<td>50</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vf Input Diode Static Forward Voltage</td>
<td>IF = 10 mA</td>
<td>1.2</td>
<td>1.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCE(sat) Collector-Emitter Saturation Voltage</td>
<td>IC = 2 mA, IB = 0, IF = 50 mA</td>
<td>0.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Rin, out Input-to-Output Internal Resistance</td>
<td>Vout = ±1.5 kV, See Note 5</td>
<td>10^6</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Cin, out Input-to-Output Capacitance</td>
<td>Vout = 0, f = 1 MHz, See Note 5</td>
<td>1</td>
<td>2</td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTE 5: These parameters are measured between both input diode leads shorted together and all the phototransistor leads shorted together.

switching characteristics at 25°C free-air temperature

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tr Rise Time</td>
<td>VCC = 10 V, I(C(on)) = 2 mA, RL = 100 Ω, See Test Circuit A of Figure 1</td>
<td>2</td>
<td>15</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>tf Fall Time</td>
<td>VCC = 10 V, I(C(on)) = 20 μA, RL = 1 kΩ, See Test Circuit B of Figure 1</td>
<td>2</td>
<td>15</td>
<td></td>
<td>μs</td>
</tr>
</tbody>
</table>

PARAMETER MEASUREMENT INFORMATION

Adjust amplitude of input pulse for:
I(C(on)) = 2 mA (Test Circuit A) or
I(C(on)) = 20 μA (Test Circuit B)

NOTES:

a. The input waveform is supplied by a generator with the following characteristics: Zout = 50 Ω, tR ≤ 15 ns, duty cycle = 1%,
 tr = 100 μs.

b. The output waveform is monitored on an oscilloscope with the following characteristics: tR < 12 ns, Rin > 1 MΩ, Cin < 20 pF.

FIGURE 1—SWITCHING TIMES
TYPICAL CHARACTERISTICS

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

FIGURE 2

COLLECTOR CURRENT
vs
INPUT-DIODE FORWARD CURRENT

FIGURE 3

RELATIVE ON-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

FIGURE 4

OFF-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

FIGURE 5

NOTES:
6. Pulse operation of input diode is required for operation beyond limits shown by dotted line.
7. These parameters were measured using pulse techniques t_w = 1 ms, duty cycle < 2%.
TYPE TIL112
OPTICALLY COUPLED ISOLATOR

TYPICAL CHARACTERISTICS

NORMALIZED TRANSISTOR STATIC FORWARD CURRENT TRANSFER RATIO
VS ON-STATE COLLECTOR CURRENT

VCE = 5 V
IF = 0
TA = 25°C

Normalized to 1.0 at IF = 1 mA

FIGURE 6

INPUT-DIODE FORWARD CONDUCTION CHARACTERISTICS

FIGURE 7

COLLECTOR CURRENT VS MODULATION FREQUENCY

VCC = 10 V
IB = 0
TA = 25°C
RL = 1 kΩ
RL = 475 Ω
RL = 100 Ω

FIGURE 8

NOTE 7: These parameters were measured using pulse techniques tW = 1 ms, duty cycle ≤ 2%.

Texas Instruments
Incorporated
Post Office Box 5012 • Dallas, Texas 75222

Printed in U.S.A.

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.