LM136-2.5/LM236-2.5/LM336-2.5V Reference Diode

General Description

The LM136-2.5/LM236-2.5 and LM336-2.5 integrated circuits are precision 2.5 V shunt regulator diodes. These monolithic IC voltage references operate as a low-temperature-coefficient 2.5 V zener with 0.2Ω dynamic impedance. A third terminal on the LM136-2.5 allows the reference voltage and temperature coefficient to be trimmed easily.
The LM136-2.5 series is useful as a precision 2.5 V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 2.5 V make it convenient to obtain a stable reference from 5V logic supplies. Further, since the LM1362.5 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.
The LM136-2.5 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM236-2.5 is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The LM336-2.5 is rated for operation over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. See the connection diagrams for available packages.

Features

- Low temperature coefficient
- Wide operating current of $400 \mu \mathrm{~A}$ to 10 mA
- 0.2Ω dynamic impedance
- $\pm 1 \%$ initial tolerance available
- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
- Fast turn-on

Typical Applications

Absolute Maximum Ratings (Note 1)	LM336	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	Soldering Information	
	TO-92 Package (10 sec.)	$260^{\circ} \mathrm{C}$
	TO-46 Package (10 sec.)	$300^{\circ} \mathrm{C}$
Reverse Current 15 mA	SO Package	
Forward Current 10 mA	Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Storage Temperature $\quad-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Infrared (15 sec.)	$220^{\circ} \mathrm{C}$
Operating Temperature Range (Note 2)	See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.	
LM136 $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
LM236 $\quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		

Parameter	Conditions	LM136A-2.5/LM236A-2.5 LM136-2.5/LM236-2.5			$\begin{gathered} \hline \text { LM336B-2.5 } \\ \text { LM336-2.5 } \end{gathered}$			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$ LM136, LM236, LM336 LM136A, LM236A, LM336B	$\begin{aligned} & 2.440 \\ & 2.465 \end{aligned}$	$\begin{aligned} & 2.490 \\ & 2.490 \end{aligned}$	$\begin{aligned} & 2.540 \\ & 2.515 \end{aligned}$	$\begin{aligned} & 2.390 \\ & 2.440 \end{aligned}$	$\begin{aligned} & 2.490 \\ & 2.490 \\ & 2 \end{aligned} .$	5.590	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Reverse Breakdown Change With Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 400 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \end{aligned}$		2.6	6		2.6	10	mV
Reverse Dynamic Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz}$		0.2	0.6		0.2	1	Ω
Temperature Stability (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{R}} \text { Adjusted to } 2.490 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \text { Figure } 2 \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}(\mathrm{LM} 336) \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & (\mathrm{LM} 236 \mathrm{H}, \mathrm{LM} 236 \mathrm{Z}) \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}(\mathrm{LM} 236 \mathrm{M}) \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}(\mathrm{LM} 136) \\ & \hline \end{aligned}$		$\begin{aligned} & 3.5 \\ & 7.5 \\ & 12 \end{aligned}$	9 18 18		1.8	6	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Reverse Breakdown Change With Current	$400 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		3	10		3	12	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.4	1		0.4	1.4	Ω
Long Term Stability	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \\ & \mathrm{t}=1000 \mathrm{hrs} \end{aligned}$		20			20		ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: For elevated temperature operation, $\mathrm{T}_{\mathrm{j}} \max$ is:

	LM136 LM236 LM336	$150^{\circ} \mathrm{C}$		
		$125^{\circ} \mathrm{C}$		
		$100^{\circ} \mathrm{C}$		
Thermal Resistance		TO-92	TO-46	SO-8
$\theta_{\text {ja }}$ (Junction to Ambient)		$\begin{gathered} \hline 180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right. \text { leads) } \\ 170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right. \text { lead) } \end{gathered}$	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{ja} (Junction to Case)		n/a	$80^{\circ} \mathrm{C} / \mathrm{W}$	n/a

Note 3: Unless otherwise specified, the LM136-2.5 is specified from $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the $\mathrm{LM} 236-2.5$ from $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the $\mathrm{LM} 336-2.5$ from $0^{\circ} \mathrm{C}$ $\leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.

Electrical Characteristics (Note 3) (Continued)

Note 4: Temperature stability for the LM336 and LM236 family is guaranteed by design. Design limits are guaranteed (but not 100\% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels. Stability is defined as the maximum change in $\mathrm{V}_{\text {ref }}$ from $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{A}}(\mathrm{min})$ or $\mathrm{T}_{\mathrm{A}}(\max)$.

Typical Performance Characteristics

00571521

00571523

Reverse Characteristics

00571522

Response Time

00571524

Forward Characteristics

00571527

Application Hints

The LM136 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.
Figure 1 shows an LM136 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to adjust for both the initial device tolerance and inaccuracies in buffer circuitry.
If minimum temperature coefficient is desired, two diodes can be added in series with the adjustment potentiometer as shown in Figure 2. When the device is adjusted to 2.490 V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1N914, 1N4148 or a 1N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136. It is usually sufficient to mount the diodes near the LM136 on the printed circuit board. The absolute resistance of R1 is not critical and any value from $2 k$ to $20 k$ will work.

00571528
FIGURE 1. LM136 With Pot for Adjustment
of Breakdown Voltage (Trim Range $= \pm 120 \mathrm{mV}$ typical)

FIGURE 2. Temperature Coefficient Adjustment (Trim Range $= \pm 70 \mathrm{mV}$ typical)

Application Hints

*L1 60 turns \#16 wire on Arnold Core A-254168-2
${ }^{\dagger}$ Efficiency $\approx 80 \%$

Precision Power Regulator with Low Temperature Coefficient

Trimmed 2.5V Reference with Temperature Coefficient Independent of Breakdown Voltage

Does not affect temperature coefficient

Application Hints
(Continued)

00571517
Bipolar Output Reference

Physical Dimensions inches (millimeters)
unless otherwise noted

Order Number LM136H-2.5, LM136H-2.5/883, LM236H-2.5, LM136AH-2.5, LM136AH-2.5/883 or LM236AH-2.5 NS Package Number H03H

Small Outline (SO) Package (M)
Order Number LM236M-2.5, LM236AM-2.5, LM336M-2.5 or LM336BM-2.5 NS Package Number M08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

TO-92 Plastic Package (Z)
Order Number LM336Z-2.5 or LM336BZ-2.5
NS Package Number Z03A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

\int National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Americas Customer	Europe Customer Support Center	Asia Pacific Customer	Japan Customer Support Center
Support Center	Fax: +49 (0) 180-530 8586	Support Center	Fax: 81-3-5639-7507
Email: new.feedback@nsc.com	Email: europe.support@nsc.com	Email: ap.support@nsc.com	Email: jpn.feedback@nsc.com
Tel: 1-800-272-9959	Deutsch Tel: +49 (0) 6995086208		Tel: 81-3-5639-7560
	English Tel: +44 (0) 8702402171		
www.national.com	Français Tel: +33 (0) 141918790		

[^0]
[^0]: National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

