KP 460 to 464 #### **KP AXIAL EPOXY LACQUERED TYPE** #### **FEATURES** Supplied loose in box, taped on reel or unidirectional. ### **APPLICATIONS** In circuits where close tolerance, reliability and low losses are of prime importance, for example: tuned circuits, filter and timing networks. #### **DETAIL SPECIFICATION** For more detailed data and test requirements see "Type detail specification HQN-384-13/101". ### QUICK REFERENCE DATA | DESCRIPTION | VALUE | |---------------------------------|---| | Capacitance range (E12 series) | 47 to 62000 pF | | Capacitance tolerance | ±5% (E24 series);
±2% (E24, E48 series);
±1% (E24, E48, E96 series) | | Rated (DC) voltage | 63 V; 160 V; 250 V; 400 V; 630 V | | Climatic category | 40/100/56 | | Rated temperature | 85 °C | | Maximum application temperature | 100 °C | | Reference specification | IEC 60384-13 | | Stability class for: | | | 63; 160; 250 V versions | class 1 | | 400; 630 V versions | class 2 | KP 460 to 464 ### **COMPOSITION OF CATALOGUE NUMBER** | PACKAGING | TAPE DISTANCE | C-TOL | | |-------------------|--|-------|---| | | | ±1% | 8 | | Taped on reel | tape distance = 63.5 mm | ±2% | 7 | | | | ±5% | 6 | | | lead length 30.0 or 28.0 mm; see tables with catalogue numbers | ±1% | 4 | | Loose in box | | ±2% | 3 | | | with catalogue numbers | ±5% | 2 | | l laidine ational | 11 105 | ±1% | 1 | | Unidirectional | H = 16.5 mm | ±2% | 0 | KP 462 #### **KP 462 GENERAL DATA** ### Specific reference data for the 250 V DC capacitors | DESCRIPTION | VALUE | | | |--|-----------------------|------------------------|--| | | at 1 kHz | at 100 kHz | | | Tangent of loss angle: | | | | | 1 000 pF < C ≤ 5000 pF | ≤5 × 10 ⁻⁴ | ≤10 × 10 ⁻⁴ | | | 5 000 pF < C ≤ 20 000 pF | ≤5 × 10 ⁻⁴ | ≤15 × 10 ⁻⁴ | | | 20 000 pF < C ≤ 22 000 pF | ≤5 × 10 ⁻⁴ | ≤25 × 10 ⁻⁴ | | | Rated voltage pulse slope (dU/dt) _R at 250 V (DC) | 10000 V/us | | | | R between leads; at 100 V; 1 minute | >100000 MΩ | | | | R between interconnected leads and case; 100 V; 1 minute | >100000 MΩ | | | | Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s | 500 V; 1 minute | | | | Withstanding (DC) voltage between leads and case | 500 V; 1 minute | | | #### Available 250 V DC versions | PACKAGING | C-tol | FIRST 8 DIGITS OF CATALOGUE NUMBER | ORDERING | |--|-------|------------------------------------|------------| | | ±1% | 2222 462 8 | preferred | | Taped on reel; notes 1 and 2 | ±2% | 2222 462 7 | preferred | | | ±5% | 2222 462 6 | on request | | | ±1% | 2222 462 4 | on request | | Loose in box; note 1 | ±2% | 2222 462 3 | on request | | The state of s | ±5% | 2222 462 2 | on request | | Unidirectional; notes 1 and 2 | ±1% | 2222 462 1 | on request | | | ±2% | 2222 462 0 | on request | ### Available on request | PACKAGING | TAPE DISTANCE (mm) | |-------------------|--------------------| | Taped in ammopack | 52.5; note 2 | | | 63.5; note 2 | | Taped on reel | 52.5; note 2 | #### **Notes** - 1. For SPQ refer to this handbook, chapter "Packaging information". - 2. For detailed specifications refer to this handbook, chapter "Packaging information". KP 462 $U_{Rdc} = 250 \text{ V}; \ U_{Rac} = 125 \text{ V}$ | | | | CATALOGUE NUMBER | | | | |---------------------------|-------------------------------------|------|------------------------|-----------------------------------|---------------|---------------| | C ⁽¹⁾ | DIMENSIONS | | TAPED ON REEL | | | | | (E24) | d _{max} × I _{max} | MASS | TAPE DISTANCE | APE DISTANCE 63.5 mm UNIDIRECTION | | CTIONAL | | (pF) | (mm) | (g) | C-tol = ±2% | C-tol = ±1% | C-tol = ±2% | C-tol = ±1% | | | | | catalogue number(2) | last 5 digits(2) | last 5 digits | last 5 digits | | l _t = 30.0 mm; | $d_t = 0.60 \pm 0.06 \text{ mm}$ | | | | | | | 1200 | | 0.5 | 2222 462 71 202 | 81202 | 01202 | 11202 | | 1 300 | | 0.5 | 2222 462 7 1302 | 81302 | 0 1302 | 11302 | | 1500 | | 0.4 | 2222 462 7 1502 | 81502 | 0 1502 | 11502 | | 1 600 | | 0.5 | 2222 462 7 1602 | 81602 | 0 1602 | 11602 | | 1800 | | 0.6 | 2222 462 7 1802 | 81802 | 0 1802 | 11802 | | 2000 | 5.0 × 11.0 | 0.6 | 2222 462 7 2002 | 82002 | 0 2002 | 12002 | | 2200 | | 0.5 | 2222 462 7 2202 | 82202 | 0 2202 | 12202 | | 2400 | | 0.5 | 2222 462 7 2402 | 82402 | 02402 | 12402 | | 2700 | | 0.5 | 2222 462 7 2702 | 82702 | 0 2702 | 12702 | | 3000 | | 0.5 | 2222 462 7 3002 | 83002 | 0 3002 | 13002 | | 3300 | | 0.5 | 2222 462 7 3302 | 83302 | 0 3302 | 13302 | | l _t = 28.0 mm; | d _t = 0.60 ±0.06 mm | | | | | | | 3600 | | 0.5 | 2222 462 7 3602 | 83602 | | | | 3900 | | 0.5 | 2222 462 7 3902 | 83902 | | | | 4300 | | 0.6 | 2222 462 7 4302 | 84302 | | | | 4700 | | 0.6 | 2222 462 7 4702 | 84702 | | | | 5100 | 6.0 × 15.0 | 0.6 | 2222 462 7 5102 | 85102 | _ | _ | | 5600 | | 0.6 | 2222 462 7 5602 | 85602 | | | | 6200 | | 0.7 | 2222 462 7 6202 | 86202 | | | | 6800 | | 0.7 | 2222 462 7 6802 | 86802 | | | | 7500 | | 0.7 | 2222 462 7 7502 | 87502 | | | | 8200 | | 0.8 | 2222 462 7 8202 | 88202 | | | | 9100 | 6.5 × 15.0 | 0.8 | 2222 462 7 9102 | 89102 | - | _ | | 10000 | | 0.9 | 2222 462 71003 | 81003 | | | | 11 000 | | 0.9 | 2222 462 7 1103 | 81103 | | | | 12000 | 7.0 × 15.0 | 1.0 | 2222 462 7 1203 | 81203 | _ | _ | | 13000 | | 1.0 | 2222 462 7 1303 | 81303 | | | | 15000 | | 1.1 | 2222 462 71503 | 81503 | | | | 16000 | 7.5×15.0 | 1.2 | 2222 462 7 1603 | 81603 | _ | _ | | 18000 | 8.0 × 15.0 | 1.3 | 2222 462 71803 | 81803 | _ | _ | | 20000 | | 1.4 | 2222 462 7 2003 | 82003 | | | | 22000 | 8.5 × 15.0 | 1.5 | 2222 462 7 2203 | . 82203 | _ | _ | ### Notes - 1. In addition to the values of the E24 series as quoted, intermediate values are available of the E48 series (with a tolerance of $\pm 2\%$ or $\pm 1\%$) and the E96 series (with a tolerance of $\pm 1\%$). The specifications of these intermediate values are equal to the specifications of the next higher value of the E24 series. - 2. The shading indicates preferred types. KP 460 to 464 #### CONSTRUCTION #### Description - Low-inductive wound cell of metal foil and a polypropylene film - Protected by a hard, water-repellent solvent-resistant blue epoxy lacquer - · Axial iron leads, solder-coated. #### Mounting #### NORMAL USE The capacitors are suitable for vertical or horizontal mounting on printed-circuit boards. The capacitors packed on bandoliers are designed for mounting on printed-circuit boards by means of automatic insertion machines. SPECIFIC METHOD OF MOUNTING TO WITHSTAND VIBRATION AND SHOCK The capacitors shall be mechanically fixed by the leads. #### **SOLDERING CONDITIONS** The capacitance stability is dependent on the maximum temperature the capacitor reaches during soldering. Figure 10 shows the typical effect of $\Delta C/C$ as a function of soldering time under the worst possible mounting conditions (horizontal on the PCB, minimum possible pitch) and with 80 °C preheating. #### Storage temperature Storage temperature: T_{stg} = -25 to +40 °C with RH maximum 80% without condensation. # RATINGS AND CHARACTERISTICS REFERENCE CONDITIONS Unless otherwise specified, all electrical values apply to an ambient free air temperature of 23 ± 1 °C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 50 $\pm 2\%$. For reference testing, a conditioning period shall be applied over 96 ± 4 hours by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20%. #### **CHARACTERISTICS** #### Capacitance - Temperature coefficient: - between –40 and +20 °C for C \leq 1000 pF: –(125 $\pm 125) \times 10^{-6}/K$ - between -40 and +20 °C for C > 1000 pF: $-(125 \pm 60) \times 10^{-6}$ /K - between +20 and +100 °C: $-(250 \pm 120) \times 10^{-6}$ /K. ### Maximum DC voltage as a function of temperature KP 460 to 464 ### Maximum RMS voltage (sinewave) as a function of frequency Fig.14 AC voltage (RMS value) as a function of frequency at 70 °C < $T_{amb} \le 100$ °C for $U_{Rdc} = 63$ V. 600 KP 460 to 464 KP 460 to 464 f (Hz) Fig.20 AC voltage (RMS value) as a function of frequency at 70 °C < $T_{amb} \le 100$ °C for $U_{Rdc} = 400$ V. KP 460 to 464 604 ### Maximum RMS current (sinewave) as a function of frequency The maximum RMS current is defined by $I_{ac} = \omega \times C \times U_{ac}$. U_{ac} is the maximum AC voltage depending on the ambient temperature in Figs 13 to 22. KP 460 to 464 ### Tangent of loss angle ### Insulation resistance #### Inductance L dependent on lead and capacitor length: ≤10 nH/cm. KP 460 to 464 ## Maximum allowed component temperature rise (ΔT) as a function of the ambient temperature (T_{amb}) ### Heat conductivity (G) as a function of body dimensions in mW/°C Table 1 Heat conductivity | extstyle ext | G
(mW/°C) | |---|--------------| | 5.0 × 11.0 | 2.7 | | 5.5 × 15.0 | 4.3 | | 6.0 × 15.0 | 4.7 | | 7.0 × 15.0 | 5.3 | | 7.5 × 15.0 | 5.7 | | 8.0 × 15.0 | 6.3 | | 8.5 × 15.0 | 6.7 | ## Power dissipation and maximum component temperature rise The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free air ambient temperature. Power dissipation can be calculated in accordance with chapter "Introduction", section "Maximum power dissipation". The component temperature rise (ΔT) can be measured (see section "Measuring the component temperature" for more details) or calculated by $\Delta T = P/G$: - ΔT = component temperature rise (°C). - P = power dissipation of the component (mW). - G = heat conductivity of the component (mW/°C). KP 460 to 464 #### Measuring the component temperature A thermocouple must be attached to the capacitor body as in Fig.26. The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_c) . The temperature rise is given by $\Delta T = T_c - T_{amb}$. To avoid radiation or convection, the capacitor should be tested in a wind-free box. #### Application note and limiting conditions To select the capacitor for a certain application, the following conditions must be checked: - The peak voltage (U_p) shall not be greater than the rated DC voltage (U_{Rdc}). - 2. The peak-to-peak voltage (U_{p-p}) shall not be greater than the maximum U_{p-p} to avoid the ionisation inception level. - The voltage pulse slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{Rdc} and divided by the applied voltage. For all other pulses following equation must be fulfilled: $$2 \times \int_{0}^{T} \left(\frac{dU}{dt}\right)^{2} \times dt < U_{Rdc} \times \left(\frac{dU}{dt}\right)_{rated}$$ T is the pulse duration. - 4. The maximum component surface temperature rise must be lower than the limits in Fig.25. - 5. The maximum component surface temperature must be lower than 100 °C. - The capacitance drift is influenced by the soldering conditions (see section "Soldering conditions" for more details). KP 460 to 464 #### **MARKING** ### **Product marking** The capacitors are marked in black ink with the following information: 1. Rated capacitance code in accordance with "IEC 60062" 2. Tolerance on rated capacitance: $F = \pm 1\%$; $G \pm 2\%$; $J = \pm 5\%$ 3. Rated (DC) voltage (e.g. 63 V) 4. Code for dielectric material (KP) 5. Production date code in accordance with *"IEC 60062; clause 5"* 6. Manufacturer. MARKING EXAMPLE 8n2 G 63 KPK2 (see Table 2) **PHILIPS** Table 2 Letter codes for year and numbers for month of production | YEAR | LETTER CODE | MONTH | CODE | |------|-------------|-----------|------| | 1998 | К | January | 1 | | 1999 | L | February | 2 | | 2000 | M | March | 3 | | 2001 | N | April | 4 | | 2002 | Р | May | 5 | | 2003 | R | June | 6 | | 2004 | S | July | 7 | | 2005 | Т | August | 8 | | 2006 | U | September | 9 | | 2007 | V | October | 0 | | 2008 | W | November | N | | 2009 | X | December | D | KP 460 to 464 ### Package marking The package containing the capacitors is marked as shown in Fig.27. ## Barcode label marking | LINE | MARKING EXPLANATION | |------|---| | 1 | Manufacturer's name | | 2 | Country of origin | | 3 | Sub-family Sub-family | | 4 | Type description | | 5 | Capacitance value, tolerance, voltage and climatic category ("IEC 60068-1") | | 6 | - | | 7 | Preference origin code: A Country of origin in code: 170 (Belgium) Responsible production centre: HQ Work order: WO | | 8 | Product type description | | 9 | Quantity and production period, year and week code | | 10 | Product code (12NC) | Fig.27 Barcode label. KP 460 to 464 ## QUICK REFERENCE TEST REQUIREMENTS (see note 1) | TEST | PROCEDURE (quick reference) | REQUIREMENTS | |--|--|---| | Robustness of leads | | | | Tensile: "IEC 60068-2-21" | load 10 N; 10 s | | | Bending:
<i>"IEC 60068-2-21"</i> | load 5 N; 4 × 90° | no visible damage
legible marking | | Torsion: | 2×180° | $ \Delta C/C \le 2\% + 1 \text{ pF } (C \le 1100 \text{ pF})$ | | Resistance to soldering heat: "IEC 60068-2-20" | solder bath: 260 °C; 5 s | ∆C/C ≤ 1% (C > 1100 pF) | | Component solvent resistance | isopropyl alcohol; 23 °C; 5 minutes | | | Robustness of component | | | | Vibration: "IEC 60068-2-6" Shock: "#FO cooce 0 07" | 10 to 55 Hz; amplitude 0.75 mm or acceleration 98 m/s²; 6 hours half sinewave; 490 m/s²; 11 ms | $ \Delta C/C \le 2\% + 1 \text{ pF } (C \le 1100 \text{ pF})$
$ \Delta C/C \le 1\% (C > 1100 \text{ pF})$
$R_{ins} \ge 50\% \text{ of specified value}$ | | "IEC 60068-2-27" | | | | Climatic sequence | | · | | Dry heat: "IEC 60068-2-2" | 16 hours; 100 °C | | | Damp heat, cyclic, test Db, first cycle: "IEC 60068-2-30" | | $ \Delta C/C \le 1\% + 1 \text{ pF } (C \le 1100 \text{ pF})$
$ \Delta C/C \le 1\% (C > 1100 \text{ pF})$ | | Cold: "IEC 60068-2-1" | 2 hours; –40 °C | R _{ins} ≥ 50% of specified value | | Damp heat, cyclic, test Db, remaining cycles: "IEC 60068-2-30" | | | | Other applicable tests | | | | Damp heat, steady state: "IEC 60068-2-3" | 56 days; 40 °C; 90 to 95% RH | $ \Delta C/C \le 1\% + 1 \text{ pF } (C \le 1100 \text{ pF})$
$ \Delta C/C \le 1\% (C > 1100 \text{ pF})$ | | | | R _{ins} ≥ 50% of specified value | | Endurance (DC): "IEC 60384-13" | 1000 hours;
1.5 × U _{Rdc} ; 85 °C
1.05 × U _{Rdc} ; 100 °C | $ \Delta C/C \le 2\% + 1 \text{ pF } (C \le 1100 \text{ pF})$
$ \Delta C/C \le 1\% (C > 1100 \text{ pF})$
 A = 100% of specified value | | Variation of capacitance with temperature: "IEC 60384-13" | static method; one cycle | $ \Delta C/C \le 2\% + 1 \text{ pF } (C \le 1100 \text{ pF})$
$ \Delta C/C \le 1\% (C > 1100 \text{ pF})$
$ A C/C \le 1\% (C > 1100 \text{ pF})$ | | Heat storage: "IEC 60384-13" | 1000 hours; 100 °C | $ \Delta C/C \le 2\% + 1 \text{ pF } (C \le 1100 \text{ pF})$
$ \Delta C/C \le 1\% (C > 1100 \text{ pF})$ | | Resistance to soldering heat with preheating: "IEC 60384-13" | body temperature: 100 °C;
bath temperature: 260 °C;
dwell time: 5 s | $ \Delta C/C \le 2\% + 1 \text{ pF } (C \le 1100 \text{ pF})$
$ \Delta C/C \le 1\% (C > 1100 \text{ pF})$ | ### Note 1999 Apr 29 610 ^{1.} For detailed information: see "Type detail specification HQN-384-13/101".